Abstract

Two micromechanical models are used to calculate the statistical distributions of the stress intensity factor of a crack in a polycrystalline plate containing stiff grains and soft grain boundaries. The first is a finite-element method based Monte Carlo procedure where the microstructure is represented by a Poisson-Voronoi tessellation. The effective elastic moduli of the uncracked plate and the stress intensity factor of the cracked plate are calculated for selected values of the parameters that quantify the level of elastic mismatch between the grains and grain boundaries. It is shown that the stress intensity factor is independent of the expected number of grains, and that it can be estimated using an analytical model involving a long crack whose tip is contained within a circular inhomogeneity surrounded by an infinitely extended homogenized material. The stress intensity factor distributions of this auxiliary problem, obtained using the method of continuously distributed dislocations, are in excellent agreement with those corresponding to the polycrystalline microstructure, and are very sensitive to the position within the inhomogeneity of the crack tip. These results suggest that fracture toughness experiments on polycrystalline plates can be considered experiments on the single grain containing the crack tip, and in turn reflect the a/w effects typical of finite-geometry specimens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.