Abstract

For shell-and-tube heat exchangers, tubesheet cracking is a major failure form. Owing to complicated structures, loadings and environments, mechanisms for the crack nucleation and propagation often puzzle engineers and as a result, it is hard to take effective measures to prevent this kind of failure from happening again. In this paper, three dimensional finite element models were established to investigate a real tubesheet cracking with the emphasis on the driving forces for the crack propagation from a fracture mechanics point of view. Three different loadings, namely residual expansion stress, crack face pressure and transverse pressure, and three crack growth patterns were considered. In order to obtain the residual stresses, the hydraulic expanding process of tube-to-tubesheet joint was simulated. Residual contact pressures between the tube and tubesheet and the induced residual stress distributions in the tubesheet were computed. The possibility for crack propagation in the tubesheet under the action of the different loadings was investigated in terms of the strain energy density factor. Results show that surface crack propagation may be driven by all the three loadings especially the transverse pressure. But when surface cracks come into the interior of the tubesheet along the thickness, as acted along the whole tubesheet thickness, the residual expansion stress would play key roles in crack propagation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.