Abstract
A fatal weakness in flexible electronics is the mechanical fracture that occurs during repetitive fatigue deformation; thus, controlling the crack development of the conductive layer is of prime importance and has remained a great challenge until now. Herein, this issue is tackled by utilizing an amyloid/polysaccharide molecular composite as an interfacial binder. Sodium alginate (SA) can take part in amyloid-like aggregation of the lysozyme, leading to the facile synthesis of a 2D protein/saccharide hybrid nanofilm over an ultralarge area (e.g., >400cm2 ). The introduction of SA into amyloid-like aggregates significantly enhances the mechanical strength of the hybrid nanofilm, which, with the help of amyloid-mediated interfacial adhesion, effectively diminishes the microcracks in the hybrid nanofilm coating after repetitive bending or stretching. The microcrack-free hybrid nanofilm then shows high interfacial activity to induce electroless deposition of metal in a Kelvin model on a substrate, which noticeably suppresses the formation of microcracks and consequent conductivity loss during the bending and stretching of the metal-coated flexible substrates. This work underlines the significance of amyloid/polysaccharide nanocomposites in the design of interfacial binders for reliable flexible electronic devices and represents an important contribution to mimicking amyloid and polysaccharide-based adhesive cements created by organisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.