Abstract

Plane strain transient finite thermomechanical deformations of heat-conducting functionally gradient materials comprised of tungsten and nickel–iron matrix are analyzed to delineate brittle/ductile failures by the nodal release technique. Each material is modeled as strain-hardening, strain-rate-hardening and thermally-softening. Effective properties are derived by the rule of mixtures. At nominal strain-rate of 2000 s −1 brittle crack speed approaches Rayleigh’s wave speed in the tungsten-plate, the nickel–iron-plate shatters at strain-rates above 1130 s −1, and the composite plate does not shatter. The maximum speed of a ductile crack in tungsten and nickel–iron is about 1.5 km/s, and that in the composite is about 0.14 km/s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.