Abstract
Crack position of metal drawing parts molding was analyzed by the BP neural network. First analysis of the drawing parts forming process may crack in different position. The BP neural network location identification was introduced in the basic process. 11 characteristic parameters from the drawing parts may crack position were gathered by acoustic emission signal acquisition system of deep drawing process. Then the BP neural network was designed rational, and carried out appropriate conduct to train and test. Establishing deep drawing parts of the relations between the different positions crack acoustic emission characteristic parameters and the corresponding position. Crack location was identified, in order to achieve the purpose of positioning the work piece forming process. The better method of acoustic emission location issues are resolved, metal deep drawing forming of crack location identification for basis. Provide the basis for metal drawing parts forming crack location identification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.