Abstract

Carbon based two-dimensional (2D) nanostructures have exceptional mechanical properties. Analysis of crack pathway in 2D graphenic materials allows for developing crack arrestors. Herein, we serve Molecular Dynamics (MD) to simulate the fracture behavior of 2D graphene-like boron-carbide (BC3) by manipulating the crack length (10, 20, 30, 40, and 50 Å) and the crack arrestor (circular and square). Young's modulus, the failure stress, failure strain, and fracture toughness of theoretically born BC3 nanosheets were then captured. The crack arrestors were studied in three different states (constant position, as well as 4 and 6 Å from crack tips). Three factors, i.e. the stress, crack length, and geometry of nanosheets determined crack pathway considering zigzag and armchair directions. Overall, circular arrestors more severely affected the fracture toughness, failure stress and failure strain with respect to square ones; while Young's modulus variation followed an inverse trend. Moreover, the highest Young's modulus was detected for cracks having length of 10 Å. Fracture toughness increased upon increasing the crack length. In conclusion, the crack arrestors were promising for tuning the mechanical properties of 2D nanosheets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.