Abstract

Molecular dynamic (MD) simulation was employed to take the molecular fingerprint of mechanical properties of beryllium-oxide nanotubes (BeONTs). In this regard, the effect of the radius, the number of walls (single-, double-, and triple-walled), and the interlayer distance, as well as the temperature on the Young's modulus, failure stress, and failure strain, are visualized and discussed. It was unveiled that larger single-walled BeONTs have lower Young's modulus in zigzag and armchair direction, and the highest Young's modulus was obtained for the (8,0) zigzag and (4,4) armchair SWBeONTs as of 645.71 GPa and 624.81 GPa, respectively. Unlike Young's modulus, however, the failure properties of the armchair structures were higher than those of zigzag ones. Furthermore, similar to SWBEONTs, an increase in the interlayer distance of double-walled BeONTs (DWBeONTs) led to a slight reduction in Young's modulus value, while no meaningful trend was found among failure behavior. For double-walled BeONTs (TWBeONTs), the elastic modulus was obviously higher in both armchair and zigzag directions compared to DWBeONTs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call