Abstract
Highly deformable materials (elastomers, gels, biological tissues, etc.) are ubiquitous in nature as well as in technology. The understanding of their flaw sensitivity is crucial to ensure a desired safety level. Fracture failure in soft materials usually occurs after the development of an uncommon crack path because of the non-classical near-tip stress field and the viscous effects. In a neo-Hookean material, the true opening stress singularity along the crack profile is of the order of , while it is of the order of ahead of the crack tip, promoting the appearance of a crack tip splitting leading to a tortuous crack. In the present paper, experimental tests concerning the fracture behavior of highly deformable thin sheets under tension are discussed, and the observed crack paths are interpreted according to the crack tip stress field arising for large deformations. The study reveals that higher strain rates facilitate the development of a simple Mode-I crack path, while lower strain rates induce a mixed Mode in the first crack propagation stage, leading to the formation of new crack tips. The above described behavior seems to not be affected by the initial crack size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.