Abstract

Glass is an excellent material for use as a microfluidic chip substrate because it has great chemical and thermal stability. This work describes a flexible platform for the rapid prototyping of microfluidic chips fabricated from glass. A debris-free laser direct-writing technology that requires no photomask generation is developed. A 266 nm laser with a high repetition rate is employed in laser-induced backside wet etching (LIBWE) for glass machining. A microfluidic pattern is designed using computer drawing software and then automatically translated into computer numerical control motion so that the microtrench is directly fabricated on the glass chip. The overall machining speed can be increased by increasing the repetition rate to ∼6 kHz. Without a clean room facility or the highly corrosive acid, HF, the overall development time is within hours. Trenches with complex structures that are hard to fabricate by photolithography were easily produced by laser direct-writing. An integrated microreactor/concentrator is demonstrated. The crack-free and debris-free surface was characterized by SEM and a surface profiler. Various effective etching chemicals for the LIBWE process were investigated to understand the etching mechanism. The minimal laser power used for glass etching was approximately 20 mW for a 6 µm wide microtrench. Several new compounds have been demonstrated to be effective in ablation. The etch threshold is minimum and does not decrease further as the unit length absorbance increases above 8000 in acetone solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.