Abstract

Abstract The effectiveness of the laser induced backside wet etching (LIBWE) of fused silica produced by subpicosecond (600 fs) and nanosecond (30 ns) KrF excimer laser pulses (248 nm) was studied. Fused silica plates were the transparent targets, and naphthalene–methyl-methacrylate ( c = 0.85, 1.71 M) and pyrene–acetone ( c = 0.4 M) solutions were used as liquid absorbents. We did not observe etching using 600 fs laser pulses, in contrast with the experiments at 30 ns, where etched holes were found. The threshold fluences of the LIBWE at nanosecond pulses were found to be in the range of 360–450 mJ cm −2 depending on the liquid absorbers and their concentrations. On the basis of the earlier results the LIBWE procedure can be explain by the thermal heating of the quartz target and the high-pressure bubble formation in the liquid. According to the theories, these bubbles hit and damage the fused silica surface. The pressure on the irradiated quartz can be derived from the snapshots of the originating and expanding bubbles recorded by fast photographic setup. We found that the bubble pressure at 460 mJ cm −2 fluence value was independent of the pulse duration (600 fs and 30 ns) using pyrene–acetone solution, while using naphthalene–methyl-methacrylate solutions this pressure was 4, 5 times higher at 30 ns pulses than it was at 600 fs pulses. According to the earlier studies, this result refers to that the pressure should be sufficiently high to remove a thin layer from the quartz surface using pyrene–acetone solution. These facts show that the thermal and chemical phenomena in addition to the mechanical effects also play important role in the LIBWE procedure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.