Abstract

AbstractImage processing is a powerful tool that allows for rapid and automated data parsing in settings that occupy large variable spaces and require large data sets. Feature detection on difficultly discerned backgrounds is a subset of image processing that facilitates the extraction of quantitative metrics from otherwise subjective data. Crack detection and quantification is an important capability in polymer electrolyte membrane fuel cell quality control, failure analysis, and optimization. This work presents a technique to perform crack detection and quantification which overcomes challenges faced by commonly used image segmentation techniques. We demonstrate the use of a geometrically filtered noise‐level detection technique to select a binary threshold value from which we then quantify how cracked a sample is. We demonstrate the accuracy of our technique using programmatically generated test images of known crack amounts and their performance on real‐world fuel cell catalyst layer samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.