Abstract
The current study aims to improve the efficiency of automatic identification of pavement distress and improve the status quo of difficult identification and detection of pavement distress. First, the identification method of pavement distress and the types of pavement distress are analysed. Then, the design concept of deep learning in pavement distress recognition is described. Finally, the mask region-based convolutional neural network (Mask R-CNN) model is designed and applied in the recognition of road crack distress. The results show that in the evaluation of the model's comprehensive recognition performance, the highest accuracy is 99%, and the lowest accuracy is 95% after the test and evaluation of the designed model in different datasets. In the evaluation of different crack identification and detection methods, the highest accuracy of transverse crack detection is 98% and the lowest accuracy is 95%. In longitudinal crack detection, the highest accuracy is 98% and the lowest accuracy is 92%. In mesh crack detection, the highest accuracy is 98% and the lowest accuracy is 92%. This work not only provides an in-depth reference for the application of deep CNNs in pavement distress recognition but also promotes the improvement of road traffic conditions, thus contributing to the progression of smart cities in the future. This article is part of the theme issue 'Artificial intelligence in failure analysis of transportation infrastructure and materials'.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.