Abstract
The understanding of how materials fail is still today a fundamental research problem for scientist and engineers. The main concern is the assessment of the necessary conditions to propagate a crack that will eventually lead to failure. Nevertheless, this kind of analysis tends to be more complicated, when a prior loading history in the material is taken into consideration and it will be extremely important to recognize all the factors involved in this process. In this work, a numerical simulation and experimental evaluation of the induction of residual stresses, which change the crack initiation conditions, in a modified compact tensile specimen is presented. Several analyses were carried out; an initial evaluation (numerical and experimental) was performed in a specimen without a crack and this was used for the estimation of a residual stress field produced by an overload; three more cases were simulated and a crack was introduced in each specimen (1 mm, 5 mm and 10 mm long, respectively). The overload was then applied to set up a residual stress field into the component; furthermore, in each case the Crack Compliance Method (CCM) was applied to measure the induced residual stress field. By performing this numerical simulation, the accuracy of the CCM can be evaluated and later corroborated by experimental procedure. On the other hand, elastic–plastic finite element analysis was utilized for the residual stress estimation. The analyses were based on the mechanical properties of a biocompatible material ( AISI 316L). The obtained results provided significant data about diverse factors, like; the manner in which a residual stress field could modify the crack initiation conditions, the convenient set up for the induction of a beneficial residual stresses field, as well as useful information that can be applied for the experimental implementation in this research. Finally, some beneficial aspects of residual stresses are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.