Abstract

Fatigue crack growth was investigated in a line pipe steel. Severe straining conditions, like those experienced by pipelines, were considered during the experiments. Crack closure effects were investigated during the tests by adopting an innovative technique based on digital image correlation. Experimentally measured crack closure levels were implemented in a crack propagation model based on elastic–plastic fracture mechanics. A modified formulation of ΔJeff, necessary to accurately describe crack propagation driving forces, is presented and employed to assess fatigue life in presence of high plastic strains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.