Abstract
Today, there is a level of panic and chaos dominating the entire world due to the massive outbreak in the second wave of COVID-19 disease. As the disease has numerous symptoms ranging from a simple fever to the inability to breathe, which may lead to death. One of these symptoms is a cough which is considered one of the most common symptoms for COVID-19 disease. Recent research shows that the cough of a COVID-19 patient has distinct features that are different from other diseases. Consequently, the cough sound can be detected and classified to be used as a preliminary diagnosis of the COVID-19, which will help in reducing the spreading of that disease. The artificial intelligence (AI) engine can diagnose COVID-19 diseases by executing differential analysis of its inherent characteristics and comparing it to other non-COVID-19 coughs. However, the diagnosis of a COVID-19 infection by cough alone is an extremely challenging multidisciplinary problem. Therefore, this paper proposes a hybrid framework for efficiently COVID-19 detection and diagnosis using various ML algorithms from cough audio signals. The accuracy of this framework is improved with the utilization of the genetic algorithm with the ML techniques. We also assess the proposed system called CR19 for diagnosis on metrics such as precision, recall, F-measure. The results proved that the hybrid (GA-ML) technique provides superior results based on different evaluation metrics compared with ML approaches such as LR, LDA, KNN, CART, NB, and SVM. The proposed framework achieve an accuracy equal to 92.19%, 94.32%, 97.87%, 92.19%, 91.48%, and 93.61% in compared with the ML are 90.78, 92.90, 95.74, 87.94, 81.56, and 92.198 for LR, LDA, KNN, CART, NB, and SVM respectively. The proposed framework will efficiently help the physicians provide a proper medical decision regarding the COVID-19 analysis, thereby saving more lives. Therefore, this CR19 framework can be a clinical decision assistance tool used to channel clinical testing and treatment to those who need it the most, thereby saving more lives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Ambient Intelligence and Humanized Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.