Abstract

BackgroundDyslipidemia causes renal damage; however, the detailed molecular mechanism has not been clarified. It is known that carnitine palmitoyl transferase 1-a (CPT1a) gene encodes an enzyme involved in fatty acid oxidation and, therefore, lipid content. In the present study, we investigated whether the accumulation of lipids induced by 7-ketocholesterol (7-KC) in tubular epithelial cells produce a fibrotic and inflammatory response through CPT1a. MethodsUsing an epithelial cell line, NRK-52E, we determine if intracellular accumulation of 7-KC modulates profibrotic and inflammatory events through CPT1a gene expression. In addition, the direct effects of CPT1a genetic modification has been studied. ResultsOur results revealed that high levels of 7-KC induce increased expression of CPT1a, TGF-β1, α- SMA and NLRP3 that was correlated with lipid content. GW3965 treatment, which have shown to facilitate the efflux of cholesterol, eliminated the intracellular lipid droplets of 7-KC laden cells and decreased the expression of CPT1a, TGF-β1, α- SMA and NLRP3. Furthermore, CPT1a Knockdown and C75 pre-treatment increased lipid content but decreased TGF-β1, α- SMA and NLRP3. ConclusionsOur findings reveal that the profibrotic effect of 7-KC on renal epithelial cells are mediated by CPT1a overexpression, which acts on TGF-β1, α-SMA and NLRP3. Thus, CPT1a downregulation protects against 7-KC-induced fibrosis in tubular epithelial cells by downregulating TGF-β1, α- SMA and NLRP3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call