Abstract

The design of offshore mono-piles is subjected to various uncertainties more than inland cases, due to experimental difficulties in characterizing required soil parameters under offshore environment. In this study, a CPT-based p-y method is proposed for monopiles embedded in clay under cyclic loading conditions. As offshore mono-piles are particularly targeted in this study, the cyclic loading condition was introduced as an important design consideration. Based on the effective cone factor, the ultimate lateral soil resistance and p-y function were formulated as a function of CPT cone resistance and cyclic loading effect factor with consideration of the number of loading cycle. As the CPT-based p-y function utilizes the continuous CPT profile directly, detailed depth profile of soil characteristics can also be directly taken into account for the analysis without additional sampling and testing procedure. The load transfer analysis using the proposed CPT-based p-y analysis for cyclic loading condition was programmed using the discretized implementation algorithm for the beam-on-elastic foundation model. To validate the CPT-based p-y analysis method, the calculated lateral load responses were compared with the results obtained from the finite element analysis and case examples for static and cyclic loading conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.