Abstract

This study investigated the loading rate effect on the fracture resistance under cyclic loading conditions to clearly understand the fracture behavior of piping materials under excessive seismic conditions. J-R fracture toughness tests were conducted under monotonic and cyclic loading conditions at various displacement rates at room temperature (RT) and the operating temperature of nuclear power plants (NPPs), i.e., 316°C. SA508 Gr. 1a lo w-alloy steel (LAS) and SA312 TP316 stainless steel (SS) piping materials were used for the tests. The fracture resistance under a reversible cyclic load was considerably lower than that under monotonic load regardless of test temperature, material, and loading rate. Under both cyclic and monotonic loading conditions, the fracture behavior of SA312 TP316 SS was independent of the loading rate at both RT and 316°C. For SA508 Gr. 1a LAS, the loading rate effect on the fracture behavior was appreciable at 316°C under both cyclic and monotonic loading conditions. However, the loading rate effect diminished when the cyclic load ratio (R) was −1. Thus, it was recognized that the fracture behavior of piping materials, including seismic loading characteristics, can be evaluated when tested under a cyclic load of R = −1 at a quasi-static loading rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.