Abstract

Hypermethylation of CpG islands is a common epigenetic alteration associated with cancer. Global patterns of hypermethylation are tumor-type specific and nonrandom. The biological significance and the underlying mechanisms of tumor-specific aberrant promoter methylation remain unclear, but some evidence suggests that this specificity involves differential sequence susceptibilities, the targeting of DNA methylation activity to specific promoter sequences, or the selection of rare DNA methylation events during disease progression. Using restriction landmark genomic scanning on samples derived from tissue culture and in vivo models of T cell lymphomas, we found that MYC overexpression gave rise to a specific signature of CpG island hypermethylation. This signature reflected gene transcription profiles and was detected only in advanced stages of disease. The further inactivation of the Pten, p53, and E2f2 tumor suppressors in MYC-induced lymphomas resulted in distinct and diagnostic CpG island methylation signatures. Our data suggest that tumor-specific DNA methylation in lymphomas arises as a result of the selection of rare DNA methylation events during the course of tumor development. This selection appears to be driven by the genetic configuration of tumor cells, providing experimental evidence for a causal role of DNA hypermethylation in tumor progression and an explanation for the tremendous epigenetic heterogeneity observed in the evolution of human cancers. The ability to predict genome-wide epigenetic silencing based on relatively few genetic alterations will allow for a more complete classification of tumors and understanding of tumor cell biology.

Highlights

  • Tumor development is driven by complex patterns of genetic and epigenetic abnormalities

  • Previous studies on human tumor samples have suggested a link between genetic alterations and the induction of aberrant DNA methylation; this link has been difficult to rigorously assess because of the incredible genetic heterogeneity found in human cancer

  • A mouse model of T cell lymphoma was used to explore the relationship between genetic and epigenetic modifications experienced by tumor cells

Read more

Summary

Introduction

Tumor development is driven by complex patterns of genetic and epigenetic abnormalities. DNA methylation changes include loss of DNA methylation (hypomethylation) in repetitive sequences, which is an event that has been linked to chromosomal instability, and gain of DNA methylation (hypermethylation) in CpG islands, which is associated with gene repression [2,3]. Convincing evidence for the significance of CpG island or promoter hypermethylation in tumor development stems from the observation that these events are associated with silencing of tumor suppressor genes such as p15INK4b, p16INK4a, BRCA1, VHL, or MLH1 [3,4]. The mechanisms involved in determining and maintaining the specificity of CpG island methylation during tumor development remain largely unknown, several explanations for this phenomena have been provided, including differential susceptibilities of DNA sequences [8,9,10], the targeting of methyltransferase

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call