Abstract
BackgroundHigh breast density is linked to an increased risk of breast cancer, and correlates with changes in collagen. In a mouse model of mammary carcinoma in the context of increased collagen deposition, the MMTV-PyMT/Col1a1tm1jae, there is accelerated mammary tumor formation and progression. Previous gene expression analysis suggests that increased collagen density elevates expression of PTGS2 (prostaglandin-endoperoxide synthase 2), the gene for cyclooxygenase-2 (COX-2).MethodsTo understand the role of COX-2 in tumor progression within a collagen-dense microenvironment, we treated MMTV-PyMT or MMTV-PyMT/Col1a1tm1jae tumors prior to and after tumor formation. Animals received treatment with celecoxib, a specific COX-2 inhibitor, or placebo. Mammary tumors were examined for COX-2, inflammatory and stromal cell components, and collagen deposition through immunohistochemical analysis, immunofluorescence, multiplex cytokine ELISA and tissue imaging techniques.ResultsPyMT/Col1a1tm1jae tumors were larger, more proliferative, and expressed higher levels of COX-2 and PGE2 than PyMT tumors in wild type (WT) mice. Treatment with celecoxib significantly decreased the induced tumor size and metastasis of the PyMT/Col1a1 tumors, such that their size was not different from the smaller PyMT tumors. Celecoxib had minimal effect on the PyMT tumors. Celecoxib decreased expression levels of COX-2, PGE2, and Ki-67. Several cytokines were over-expressed in PyMT/Col1a1 compared to PyMT, and celecoxib treatment prevented their over-expression. Furthermore, macrophage and neutrophil recruitment were enhanced in PyMT/Col1a1 tumors, and this effect was inhibited by celecoxib. Notably, COX-2 inhibition reduced overall collagen deposition. Finally, when celecoxib was used prior to tumor formation, PyMT/Col1a1 tumors were fewer and smaller than in untreated animals.ConclusionThese findings suggest that COX-2 has a direct role in modulating tumor progression in tumors arising within collagen-dense microenvironments, and suggest that COX-2 may be an effective therapeutic target for women with dense breast tissue and early-stage breast cancer.Electronic supplementary materialThe online version of this article (doi:10.1186/s13058-016-0695-3) contains supplementary material, which is available to authorized users.
Highlights
High breast density is linked to an increased risk of breast cancer, and correlates with changes in collagen
COX-2 expression levels are elevated in collagen-dense tumors To assess whether COX-2 is involved in tumor growth and enhanced in a collagen-dense tumor microenvironment, we used our previously characterized transgenic mouse model of increased stromal collagen based on the Col1a1tm1jae mouse
Mammary tumors were induced by the expression of the robust transgene, mouse mammary tumor virus (MMTV)-polyomavirus middle T (PyMT), in which mammary carcinomas are driven by expression of the polyoma middle-T antigen, resulting in a mammary carcinoma that shares many histopathologic features with progression of human breast cancer [35, 36]
Summary
High breast density is linked to an increased risk of breast cancer, and correlates with changes in collagen. High COX-2 expression correlates with increased levels of aligned collagen and both are the driving force for the development of ductal carcinoma in situ in a postpartum mammary gland involution mouse model. Celecoxib prevents sporadic colorectal adenoma [31] and several clinical trials have evaluated the use of celecoxib alone or in combination with chemotherapy regimens in breast cancer settings [13]. Despite these associations, the role of COX-2 in collagen remodeling and in development of invasive breast cancer is still unclear
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have