Abstract

Currently, COVID-19 is considered to be the most dangerous and deadly disease for the human body caused by the novel coronavirus. In December 2019, the coronavirus spread rapidly around the world, thought to be originated from Wuhan in China and is responsible for a large number of deaths. Earlier detection of the COVID-19 through accurate diagnosis, particularly for the cases with no obvious symptoms, may decrease the patient’s death rate. Chest X-ray images are primarily used for the diagnosis of this disease. This research has proposed a machine vision approach to detect COVID-19 from the chest X-ray images. The features extracted by the histogram-oriented gradient (HOG) and convolutional neural network (CNN) from X-ray images were fused to develop the classification model through training by CNN (VGGNet). Modified anisotropic diffusion filtering (MADF) technique was employed for better edge preservation and reduced noise from the images. A watershed segmentation algorithm was used in order to mark the significant fracture region in the input X-ray images. The testing stage considered generalized data for performance evaluation of the model. Cross-validation analysis revealed that a 5-fold strategy could successfully impair the overfitting problem. This proposed feature fusion using the deep learning technique assured a satisfactory performance in terms of identifying COVID-19 compared to the immediate, relevant works with a testing accuracy of 99.49%, specificity of 95.7% and sensitivity of 93.65%. When compared to other classification techniques, such as ANN, KNN, and SVM, the CNN technique used in this study showed better classification performance. K-fold cross-validation demonstrated that the proposed feature fusion technique (98.36%) provided higher accuracy than the individual feature extraction methods, such as HOG (87.34%) or CNN (93.64%).

Highlights

  • The COVID-19 is a deadly disease caused by the newly recognized coronavirus.In December 2019, coronavirus (SARS-COV-2) infected the human body for the first time, and it can spread principally among humans through the droplets formed by the infected persons when they speak, cough or sneeze [1,2,3,4,5,6]

  • To validate the framework developed for intelligent COVID-19 detection, this work used a total of 5090 chest X-ray images for training, testing and validation, as shown in Table 1 without data augmentation

  • Detection of the COVID-19 in a faster, easier, and cheaper way can help in saving lives and reduce the burden on healthcare professionals

Read more

Summary

Introduction

The COVID-19 is a deadly disease caused by the newly recognized coronavirus. In December 2019, coronavirus (SARS-COV-2) infected the human body for the first time, and it can spread principally among humans through the droplets formed by the infected persons when they speak, cough or sneeze [1,2,3,4,5,6]. As the droplets are too heavy to travel far, they cannot spread person-to-person without coming in close contact [7]. The exact time is not yet known, a new study has estimated that the COVID-19 can be viable in the air for up to 3 hours, on copper for 4 hours and up to 72 hours on plastic and stainless steel. COVID-19 attacks the lung and damages the tissues of an infected person. Other secondary symptoms could be body aches, sore throat, and a headache could be all possible

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call