Abstract

Corona Virus Disease 19 (COVID-19) firstly spread in China since December 2019. Then, it spread at a high rate around the world. Therefore, rapid diagnosis of COVID-19 has become a very hot research topic. One of the possible diagnostic tools is to use a deep convolution neural network (DCNN) to classify patient images. Chest X-ray is one of the most widely-used imaging techniques for classifying COVID-19 cases. This paper presents a proposed wireless communication and classification system for X-ray images to detect COVID-19 cases. Different modulation techniques are compared to select the most reliable one with less required bandwidth. The proposed DCNN architecture consists of deep feature extraction and classification layers. Firstly, the proposed DCNN hyper-parameters are adjusted in the training phase. Then, the tuned hyper-parameters are utilized in the testing phase. These hyper-parameters are the optimization algorithm, the learning rate, the mini-batch size and the number of epochs. From simulation results, the proposed scheme outperforms other related pre-trained networks. The performance metrics are accuracy, loss, confusion matrix, sensitivity, precision, F_{1} score, specificity, Receiver Operating Characteristic (ROC) curve, and Area Under the Curve (AUC). The proposed scheme achieves a high accuracy of 97.8 %, a specificity of 98.5 %, and an AUC of 98.9 %.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.