Abstract

The efficient diagnosis of COVID-19 plays a key role in preventing the spread of this disease. The computer-aided diagnosis with deep learning methods can perform automatic detection of COVID-19 using CT scans. However, large scale annotation of CT scans is impossible because of limited time and heavy burden on the healthcare system. To meet the challenge, we propose a weakly-supervised deep active learning framework called COVID-AL to diagnose COVID-19 with CT scans and patient-level labels. The COVID-AL consists of the lung region segmentation with a 2D U-Net and the diagnosis of COVID-19 with a novel hybrid active learning strategy, which simultaneously considers sample diversity and predicted loss. With a tailor-designed 3D residual network, the proposed COVID-AL can diagnose COVID-19 efficiently and it is validated on a large CT scan dataset collected from the CC-CCII. The experimental results demonstrate that the proposed COVID-AL outperforms the state-of-the-art active learning approaches in the diagnosis of COVID-19. With only 30% of the labeled data, the COVID-AL achieves over 95% accuracy of the deep learning method using the whole dataset. The qualitative and quantitative analysis proves the effectiveness and efficiency of the proposed COVID-AL framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.