Abstract

Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus. Diagnosis of Computed Tomography (CT), and Chest X-rays (CXR) contains the problem of overfitting, earlier diagnosis, and mode collapse. In this work, we predict the classification of the Corona in CT and CXR images. Initially, the images of the dataset are pre-processed using the function of an adaptive Gaussian filter for de-nosing the image. Once the image is pre-processed it goes to Sigmoid Based Hyper-Parameter Modified DNN(SHMDNN). The hyperparameter modification makes use of the optimization algorithm of adaptive grey wolf optimization (AGWO). Finally, classification takes place and classifies the CT and CXR images into 3 categories namely normal, Pneumonia, and COVID-19 images. Better accuracy of 99.9% is reached when compared to different DNN networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.