Abstract

The increasing awareness of waste circular economy has motivated valorization strategies for minimizing resource consumption and waste production in the private sector. With the rise of various industrial wastes and with the emergence of COVID-19 wastes, a sustainable approach is needed to mitigate the growing concern about wastes. Thermochemical treatment technologies in the form of direct combustion, torrefaction, pyrolysis, and gasification have been identified to have vital roles in the value-creation of various waste streams. Moreover, the alignment of thermochemical processes for waste mitigation concerning the circular economy framework needs to be established. Accordingly, a comprehensive review of the different thermochemical treatment options for industrial and the novel COVID-19 medical wastes streams is conducted in this study. This review focuses on highlighting the instrumental role of thermochemical conversion platforms in achieving a circular economy in the industrial sector. Various strategies in waste mitigation through various thermochemical processes such as management, recovery, reduction, and treatment are discussed. The results show that thermochemical technologies are beneficial in addressing the sustainability concerns on mitigating wastes from the industrial sector and wastes brought by the COVID-19 pandemic. This also includes the current issues faced as well as future perspectives of the thermochemical conversion technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.