Abstract

We study the question how many subgroups, cosets or subspaces are needed to cover a finite Abelian group or a vector space if we have some natural restrictions on the structure of the covering system. For example we determine, how many cosets we need, if we want to cover all but one element of an Abelian group. This result is a group theoretical extension of the theorem of Brouwer, Jamison and Schrijver about the blocking number of an affine space. We show that these covering problems are closely related to combinatorial problems, including the so-called additive basis conjecture, the three-flow conjecture, and a conjecture of Alon, Jaeger and Tarsi about nowhere zero vectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.