Abstract

A partial cube is a graph having an isometric embedding in a hypercube. Partial cubes are characterized by a natural equivalence relation on the edges, whose classes are called zones. The number of zones determines the minimal dimension of a hypercube in which the graph can be embedded. We consider the problem of covering the vertices of a partial cube with the minimum number of zones. The problem admits several special cases, among which are the following:cover the cells of a line arrangement with a minimum number of lines,select a smallest subset of edges in a graph such that for every acyclic orientation, there exists a selected edge that can be flipped without creating a cycle,find a smallest set of incomparable pairs of elements in a poset such that in every linear extension, at least one such pair is consecutive,find a minimum-size fibre in a bipartite poset.We give upper and lower bounds on the worst-case minimum size of a covering by zones in several of those cases. We also consider the computational complexity of those problems, and establish some hardness results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.