Abstract

An asymptotic expansion of length 2 is established for the coverage probabilities of confidence intervals for the underlying $q$-quantile which are derived by bootstrapping the sample $q$-quantile. The corresponding level error turns out to be of order $O(n^{-1/2})$ which is unexpectedly low. A confidence interval of even more practical use is derived by using backward critical points. The resulting confidence interval is of the same length as the one derived by ordinary bootstrap but it is distribution free and has higher coverage probability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.