Abstract
We give a large-sample analysis of the minimal coverage probability of the usual confidence intervals for regression parameters when the underlying model is chosen by a “conservative” (or “overconsistent”) model selection procedure. We derive an upper bound for the large-sample limit minimal coverage probability of such intervals that applies to a large class of model selection procedures including the Akaike information criterion as well as various pretesting procedures. This upper bound can be used as a safeguard to identify situations where the actual coverage probability can be far below the nominal level. We illustrate that the (asymptotic) upper bound can be statistically meaningful even in rather small samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.