Abstract

In order to meet the requirements of coverage path planning task for unmanned surface vehicle, a coverage apth planning algorithm of unmanned surface vehicle based on improved biological inspired neural network is proposed. The template model method and jump point search algorithm are introduced on the basis of biological inspired neural network to solve the problem that the original algorithm cannot completely cover and lock when adjacent to obstacles. To meet the task requirements and enrich the functionality of the algorithm, the island type obstacle template is introduced to make the algorithm give priority to island coverage detection. The problem of obstacle disappearance is solved by enhancing the ability of algorithm to cover specific area first. In the simulation, six marine maps with different complexity are established to verify the effectiveness of the path planning algorithm. Compared with the other coverage path planning algorithms, the simulation experiment proves that the proposed improved biological inspired neural network path planning algorithm improves the efficiency of coverage path planning, shortens the path length and reduces the path repetition rate on the premise of ensuring 100% coverage. Furthermore, the proposed improved biological inspired neural network algorithm achieves the shortest path planning time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.