Abstract

We introduce the first complete nonparametric model for the astrophysical distribution of the binary black hole (BBH) population. Constructed from basis splines, we use these models to conduct the most comprehensive data-driven investigation of the BBH population to date, simultaneously fitting nonparametric models for the BBH mass ratio, spin magnitude and misalignment, and redshift distributions. With GWTC-3, we report the same features previously recovered with similarly flexible models of the mass distribution, most notably the peaks in merger rates at primary masses of ∼10M ⊙ and ∼35M ⊙. Our model reports a suppressed merger rate at low primary masses and a mass-ratio distribution consistent with a power law. We infer a distribution for primary spin misalignments that peaks away from alignment, supporting conclusions of recent work. We find broad agreement with the previous inferences of the spin magnitude distribution: the majority of BBH spins are small (a < 0.5), the distribution peaks at a ∼ 0.2, and there is mild support for a nonspinning subpopulation, which may be resolved with larger catalogs. With a modulated power law describing the BBH merger rate’s evolution in redshift, we see hints of the rate evolution either flattening or decreasing at z ∼ 0.2–0.5, but the full distribution remains entirely consistent with a monotonically increasing power law. We conclude with a discussion of the astrophysical context of our new findings and how nonparametric methods in gravitational-wave population inference are uniquely poised to complement to the parametric approach as we enter the data-rich era of gravitational-wave astronomy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.