Abstract

The recent discovery of GW150914, the binary black hole merger detected by Advanced LIGO, has the potential to revolutionize observational astrophysics. But to fully utilize this new window into the universe, we must compare these new observations to detailed models of binary black hole formation throughout cosmic time. Expanding upon our previous work (Rodriguez et al., 2015), we study merging binary black holes formed in globular clusters using our Monte Carlo approach to stellar dynamics. We have created a new set of 52 cluster models with different masses, metallicities, and radii to fully characterize the binary black hole merger rate. These models include all the relevant dynamical processes (such as two-body relaxation, strong encounters, and three-body binary formation) and agree well with detailed direct N-body simulations. In addition, we have enhanced our stellar evolution algorithms with updated metallicity-dependent stellar wind and supernova prescriptions, allowing us to compare our results directly to the most recent population synthesis predictions for merger rates from isolated binary evolution. We explore the relationship between a cluster's global properties and the population of binary black holes that it produces. In particular, we derive a numerically calibrated relationship between the merger times of ejected black hole binaries and a cluster's mass and radius. We explore the masses and mass ratios of these binaries as a function of redshift, and find a merger rate of ~5 Gpc$^{-3}$ yr$^{-1}$ in the local universe, with 80% of sources having total masses from $32M_{\odot}$ to $64M_{\odot}$. Under standard assumptions, approximately 1 out of every 7 binary black hole mergers in the local universe will have originated in a globular cluster, but we also explore the sensitivity of this result to different assumptions for binary stellar evolution. [Abridged]

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call