Abstract

Commercial perennial agriculture is prone to declining productivity due to negative plant-soil feedback. An alternative to costly and environmentally harmful conventional treatment such as soil fumigation could be to manipulate soil microbial diversity through careful selection and management of cover crop mixtures. Although cover crops are already used in these systems for other reasons, their capacity to influence soil biota is unexploited. Here, we examine the role of plant diversity and identity on plant-soil feedbacks in the context of perennial agriculture. We identify key microorganisms involved in these feedbacks and explore plant-based strategies for mitigating decline of perennial crop plants. We conclude that (1) increasing plant diversity increases soil microbial diversity, minimizing the proliferation of soil-borne pathogens; (2) populations of beneficial microbes can be increased by increasing plant functional group richness, e.g., legumes, C4 grasses, C3 grasses, and non-leguminous forbs; (3) brassicas suppress fungal pathogens and promote disease-suppressive bacteria; (4) native plants may further promote beneficial soil microbiota; and (5) frequent tillage, herbicide use, and copper fungicides can harm populations of beneficial microbes and, in some cases, contribute to greater crop decline. Non-crop vegetation management is a viable and cost-effective means of minimizing crop decline in perennial monocultures but is in need of more direct experimental investigation in perennial agroecosystems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.