Abstract

A consistent, local coordinate formulation of covariant Hamiltonian field theory is presented. Whereas the covariant canonical field equations are equivalent to the Euler–Lagrange field equations, the covariant canonical transformation theory offers more general means for defining mappings that preserve the form of the field equations than the usual Lagrangian description. It is proven that Poisson brackets, Lagrange brackets, and canonical 2-forms exist that are invariant under canonical transformations of the fields. The technique to derive transformation rules for the fields from generating functions is demonstrated by means of various examples. In particular, it is shown that the infinitesimal canonical transformation furnishes the most general form of Noether's theorem. Furthermore, we specify the generating function of an infinitesimal space-time step that conforms to the field equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.