Abstract

A consistent, local coordinate formulation of covariant Hamiltonian field theory is presented. While the covariant canonical field equations are equivalent to the Euler-Lagrange field equations, the covariant canonical transformation theory offers more general means for defining mappings that preserve the action functional - and hence the form of the field equations - than the usual Lagrangian description. Similar to the well-known canonical transformation theory of point dynamics, the canonical transformation rules for fields are derived from generating functions. As an interesting example, we work out the generating function of type F_2 of a general local U(N) gauge transformation and thus derive the most general form of a Hamiltonian density that is form-invariant under local U(N) gauge transformations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.