Abstract
Numerical integration of the field equations in bimetric relativity is necessary to obtain solutions describing realistic systems. Thus, it is crucial to recast the equations as a well-posed problem. In general relativity, under certain assumptions, the covariant BSSN formulation is a strongly hyperbolic formulation of the Einstein equations, hence its Cauchy problem is well-posed. In this paper, we establish the covariant BSSN formulation of the bimetric field equations. It shares many features with the corresponding formulation in general relativity, but there are a few fundamental differences between them. Some of these differences depend on the gauge choice and alter the hyperbolic structure of the system of partial differential equations compared to general relativity. Accordingly, the strong hyperbolicity of the system cannot be claimed yet, under the same assumptions as in general relativity. In the paper, we stress the differences compared with general relativity and state the main issues that should be tackled next, to draw a roadmap towards numerical bimetric relativity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.