Abstract

The tracking of dynamic functional connectivity (dFC) states in resting-state fMRI scans aims to reveal how the brain sequentially processes stimuli and thoughts. Despite the recent advances in statistical methods, estimating the high dimensional dFC states from a small number of available time points remains a challenge. This paper shows that the challenge is reduced by linear covariance shrinkage, a statistical method used for the estimation of large covariance matrices from small number of samples. We present a computationally efficient formulation of our approach that scales dFC analysis up to full resolution resting-state fMRI scans. Experiments on synthetic data demonstrate that our approach produces dFC estimates that are closer to the ground-truth than state-of-the-art estimation approaches. When comparing methods on the rs-fMRI scans of 162 subjects, we found that our approach is better at extracting functional networks and capturing differences in rs-fMRI acquisition and diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.