Abstract
According to Hardy-Weinberg, for a single autosomal locus, a population achieves equilibrium in one generation of random mating if allelic frequency is the same in the sexes, or in two generations if the frequency is not. For a single X-chromosomal locus, however, the approach to equilibrium oscillates and is gradual. Covariances between relatives for autosomal and for X-chromosomal loci are in the literature for a random mating population in equilibrium. Although assumption of equilibrium is defensible for an autosomal locus, it is less defensible for an X-chromosomal locus. Covariances between collateral and between lineal relatives are derived for X-chromosomal loci in a random mating population not in equilibrium. Collateral relatives such as sibs are of the same generation, and lineal relatives such as parent-offspring are of different generations. Coefficient of co-ancestry between relatives, based on identity by descent, was used in this development. Results are applicable to crossbreeding in livestock and poultry, and also to haplo-diploid organisms, such as the honeybee, in which the entire genome is equivalent to being X-chromosomal.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have