Abstract
Comprehensive SummaryIntroducing covalently crosslinked network to telechelic polymers can enable the formation of advanced polymeric materials with enhanced material properties. In this contribution, well‐defined telechelic polymers bearing acetoacetate groups were synthesized via Ru‐catalyzed ring‐opening metathesis polymerization of cyclooctene in the presence of chain transfer agents. Given the unique feature of muti‐site reactive acetoacetate end groups, several crosslinked networks were constructed using different crosslinkers under mild conditions. In the Michael addition reaction system, the introduction of di/trifunctional aliphatic acrylate as crosslinkers significantly enhanced the mechanical properties of the generated crosslinked network (tensile strength up to 27 MPa, elongation at break up to 500%). On the other hand, vitrimers with dynamic covalent crosslinked networks were accessed via transamination of vinylogous urethane reaction using telechelic polymers and tris(2‐aminoethyl)amine. These vitrimers presented great mechanical properties and reprocessing properties. These strategies can be potentially applied to construct other types of high‐performance polymeric materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.