Abstract

Hydrogenated TiO2 (H-TiO2) are considered one of the most promising materials for supercapacitors given its low-cost, high conductivity, and enhanced electrochemical activity. However, the electrochemical performances of H-TiO2 due to lacking suitable structures is unsatisfactory, and thus how to design energetic H-TiO2-based electrode architectures still remains a great challenge. Herein, covalently coupled ultrafine H-TiO2 nanocrystals/nitrogen-doped graphene (H-TiO2/NG) hybrid materials were developed through a simple hydrothermal route followed by hydrogenation. Within this architecture, the strong interaction between H-TiO2 nanocrystals and NG sheets via covalent chemical bonding affords high structural stability inhibiting the aggregation of H-TiO2 nanocrystals. Meanwhile, the NG matrices function as an electrical highway and a mechanical backbone so that most of well-dispersed ultrafine H-TiO2 nanocrystals are electrochemically active but stable. As a result, the optimized H-TiO2/NG (H-TiO2/NG-B) exhibited high reversible specific capacity of 385.2 F g(-1) at 1 A g(-1), enhanced rate performance of 320.1 F g(-1) at a high current density of 10 A g(-1), and excellent cycling stability with 98.8% capacity retention.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call