Abstract

Metal organic frameworks (MOFs)@covalent organic frameworks (COFs) (MOFs@COFs) hybrid materials not only combine the advantages of MOFs and COFs, but the possible synergistic effect at the MOFs-COFs interface can improve the performance of the hybrid materials greatly. Herein, the Br-COFs shell was in-situ grown on the surface of the NH2-UiO-66 core by Schiff-based reaction and a kind of novel covalently connected core–shell NH2-UiO-66@Br-COFs hybrid materials were prepared accordingly. Unique structure was generated at the core–shell interface which could be effectively adjusted by the coating amount of Br-COFs. In particular, abundant ultramicropores were generated at the interfacial layers as compared with NH2-UiO-66 and Br-COFs, and the maximum ultramicropore volume (Vultra) was up to 0.157 cm3·g−1. These produced ultramicropores at the core–shell interface made a great positive contribution to the CO2 capacity and the maximum CO2 capacity of the hybrid materials was measured to be 169.5 mg·g−1 at 273 K and 1.0 bar, outperformed the corresponding single MOF and COF. Additionally, the highest I2 vapor uptake of the hybrid materials was determined to be 3.73 g·g−1 and it increased with the increase of the coating amount of Br-COFs. This work presents the successful regulation of the adsorption performance by the rational fabrication of novel hybrid MOFs@COFs interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call