Abstract

The three- and two-dimensional covalent metal–organic network (CMON) compounds {[Ti(μ1,6:η2,η1-4,4′-OC12H8O)0.5(μ1,6:η2,η1-4,4′-OC12H8O)(OiPr)(HOiPr)]2·THF}n (1) and {[Ti(μ1,3-1,3-OC6H4O)(μ-1,3-OC6H4OH)(1,3-OC6H4OH) (HOiPr)]2}n (2) were synthesized by treatment of Ti(OiPr)4 with 4,4′-dihydroxybiphenyl in THF and resorcinol in CS2, respectively, at 100°C. Diffraction data was collected at the Cornell High Energy Synchrotron Source (CHESS) because of the small, weakly diffracting nature of the crystals. 1 (C26H31O5.5Ti, monoclinic, P21, a=10.137(2), b=15.988(3), c=15.745(3), β=107.76(3)°, Z=4, R=0.0858) and 2 (C21H22O7Ti, monoclinic, P21/c, a=11.955(2), b=16.275(3), c=11.028(2), β=113.25(3)°, Z=4, R=0.0550) are both based upon similar edge-sharing bioctahedral dititanium building blocks, (i.e., Ti2(μ-OAr)2). Six connections per dititanium unit constrain the structural motif of 1 to be base-centered. Four μ1,3-diphenoxides per dititanium core in 2 connect to provide a rectangular net, but the regiochemistry of resorcinol ultimately restricts its dimensionality. The structures suggest design elements based on the number and geometry of connecting organic linkages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call