Abstract

Polypropylene hollow fiber is a kind of ideal material for stir bar sorptive extraction (SBSE) which possesses the advantages of porous structure, large specific surface area, high mechanical strength, and good solvent resistance. In this work, a novel SBSE device using the polypropylene hollow fiber-based stir bar with the detachable dumbbell-shaped structure was designed and prepared. Covalent organic framework-V (COF-V), which possesses porous structure, sphere shape with large specific surface area, was synthesized at room temperature and grown on polypropylene hollow fiber by polydopamine modification method. Compared with previous studies which used etched poly(ether ether ketone) as supporting material, polypropylene hollow fiber omitted the complicated, difficult and dangerous pretreatment process with high concentrated sulfuric acid. The immobilization of COF-V on the polypropylene hollow fiber significantly endows them with multiple interaction abilities including hydrophobic interaction and π-π interaction. The stir bar showed good performance and stability for the extraction of four benzophenones including BP-1, BP-6, BP-3 and Ph-BP. By coupling with HPLC-UV, the COF-V@polypropylene hollow fiber based SBSE method showed wide linear range (0.1-200ng/mL), excellent linearity (R2 ≥ 0.9979), high sensitivity (LODs in the range of 0.02-0.03ng/mL), and good repeatability (RSD ≤ 5.21%). This method was successfully applied to the analysis of benzophenones in soil and sunscreen samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call