Abstract

In this study, we introduce an economically viable and scalable process for developing a novel covalent organic framework (COF), which is a cross-linked polymer. The resulting material, TzTFB-COF, is successfully functionalized with silver and copper nanoparticles, which show high adequacy in the degradation of nitroaromatic compounds (NACs). For the synthesis of TzTFB-COF, s-tetrazine diamine (Tz) and 1,3,5-triformylbenzene (TFB) are chosen as building blocks, which exhibit a high density of nitrogen-containing sites. TzTFB-COF shows good chemical and thermal stability (>300 °C). For functionalization of TzTFB-COF with silver and copper nanoparticles, a solution infiltration technique is used. The composite materials, i.e., Ag@TzTFB-COF and Cu@TzTFB-COF, have been characterized using various spectroscopic and analytical techniques, which show high activity, high selectivity, and excellent chemical and thermal stability up to 350 °C. The silver and copper contents of Ag@TzTFB-COF and Cu@TzTFB-COF are determined to be 9.6 and 12.4 wt % by inductively coupled plasma optical emission spectrometer (ICP-OES). The catalytic efficiency of the synthesized Ag@TzTFB-COF and Cu@TzTFB-COF materials is assessed in the context of catalyzing the hydrogenation of NACs. Experimental results reveal a remarkable catalytic performance when conducted in an aqueous medium, and notably, the materials demonstrate substantial potential for reusability across multiple catalytic cycles. The determined parameters for the catalytic hydrogenation reaction, i.e., the rate constants and Gibbs free energies, are found to be 0.0185 s-1 and 9.878 kJ/mol for Ag@TzTFB-COF and 0.0219 s-1 and 9.615 kJ/mol for Cu@TzTFB-COF. Thus, the catalytic reaction exhibits characteristics of endothermic, endergonic, and nonspontaneous nature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call