Abstract

Graphene oxide (GO) has attracted extensive research interest as a platform for DNA adsorption and biosensor development. While most researchers use simple physisorption of fluorescently labeled DNA, covalent sensors are less susceptible to non-specific probe displacement and minimize false positive results. In this work, three thymine-rich DNA probes of different lengths are modified on their 3′-end with an amino group for covalent conjugation to GO. They also each contain an internally labeled fluorophore so that Hg2+ binding can lead to a large distance increase between the fluorophore and the GO surface for fluorescence signaling. Hg2+-dependent fluorescence signaling from the covalent sensors are compared with that from the non-covalent sensors in terms of sensitivity, selectivity, signaling kinetics, and continuous monitoring. The covalent sensors are much more stable and resistant to non-specific probe displacement, while still retaining high sensitivity and similar selectivity. The detection limits are 16.3 and 20.6nM Hg2+, respectively, for the covalent and non-covalent sensors, and detection of spiked Hg2+ in Lake Ontario water is demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call