Abstract
Thin films of cellulose are advantageous for analytical studies in aqueous environments to investigate various factors determining the performance of cellulose-based products. However, the weak fixation of cellulose layers on common carrier materials often limits this approach. To address this problem, we suggest a novel maleic anhydride copolymer precoating technique which allows for the covalent attachment of cellulose thin films through esterification. Maleic anhydride copolymers were deposited and covalently bound onto planar, aminosilane-modified glass or silicon oxide surfaces. Cellulose was subsequently immobilized on top of the copolymer precoatings by spin coating from N-methylmorpholine-N-oxide/dimethyl sulfoxide solutions. The resulting cellulose films were thoroughly characterized with respect to layer thickness, morphology, chemical constitution, and electrical charging. The stability of the layers against shear stress was demonstrated in aqueous solutions and the covalent attachment of the cellulose to the copolymer films was proven by means of dissolution experiments followed by ellipsometry and high-resolution X-ray photoelectron spectroscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.