Abstract

Polymer membranes represent an attractive platform for energy-efficient gas separation, but they are known to suffer from plasticization during continuous gas-separation processes. This phenomenon is caused by the spontaneous relaxation of individual polymer chains arising from the swelling effect induced by high-pressure highly soluble gases such as CO2, and it weakens the stability of the membrane, leading to a significant loss of selectivity during the separation of mixed gases. Thus, minimizing the disadvantages of polymer membranes is essential to ensure reliable gas-separation performance for practical applications. This feature article summarizes the theory underlying the plasticization of polymer membranes and introduces covalent and non-covalent approaches to suppress plasticization behaviour on a molecular level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.