Abstract

We developed a simulation model to mimic cuttlefish movement. We developed a simulation model to mimic cuttlefish movement, representing an elongated body with two undulatory fins that generate propulsive forces for underwater movement. Our mathematical model concurrently solved equations for both body mechanics and fluid dynamics, using the Navier–Stokes equations to describe the latter. To implement this self-consistent model, we utilized deformable mesh techniques. This enabled us to compute both the apparatus’s movement performance characteristics and hydrodynamic flow parameters, such as vorticity and pressure fields. Our study focused on examining how oscillations of the left and right fins, each with different parameters, impact the apparatus’s maneuverability. We found that differences in frequencies between the left and right fins resulted in a peak turning angle velocity. We also explored how the interplay between hydrodynamic forces influences the apparatus’s course control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.