Abstract

Numerical modelling of deformation in hydromechanical systems can be time-consuming using fully coupled classical numerical methods for large representative porous media samples. In this paper, we present a new two-way coupled partitioned fluid–solid system. The coupled system is applied for simulating geomechanical processes at the pore-scale. We track the deformation of the solid resulting from the drainage of resident fluids in the pores, as well as the evolution of fluid properties from dynamic loading. The finite element method is responsible for capturing the structural deformation in the coupled system while the dynamic pore network is used for modelling multiphase flow in the fluid subsystem. A fictitious fluid–solid interface is created at each pore network-finite element node junction via convex hulling, followed by data exchange using linear interpolation. The results show good agreement with a pre-existing coupled finite volume model and the computations are completed in much less time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.