Abstract
The aim of this study was to simulate impacts of regional climate change in the 2070s on carbon (C) cycle of a Mediterranean watershed combining field measurements, Envisat MERIS and IKONOS data, and the Carnegie Ames Stanford Approach model. Simulation results indicated that the present total C sink status (1.36 Mt C year(-1)) of Mediterranean evergreen needleleaf forest, grassland and cropland ecosystems is expected to weaken by 7.6% in response to the climate change in the 2070s (Mt=10(12) g). This decreasing trend was mirrored in soil respiration (R H), aboveground and belowground net primary production (NPP), NEP, and net biome production (NBP). The decrease in NEP in the 2070s was the highest (21.9%) for mixed forest where the smallest present C sink of 0.03 Mt C year(-1) was estimated. The average present net ecosystem production (NEP) values were estimated at 110±15, 75±19, and 41±25 g C m(-2) years(-1) in forest, grassland, and cropland, respectively, with a watershed-scale mean of 95±30 g C m(-2) years(-1). The largest present C sink was in grassland, with a total C pool of 0.55 Mt C year(-1), through its greater spatial extent.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have